Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection.
نویسندگان
چکیده
The protozoan Trypanosoma cruzi expresses multiple isoforms of the GP63 family of metalloproteases. Polyclonal antiserum against recombinant GP63 of T. cruzi (TcGP63) was used to study TcGP63 expression and localization in this organism. Western blot analysis revealed that TcGP63 is 61 kDa in epimastigotes, amastigotes, and tissue culture-derived trypomastigotes but 55 kDa in metacyclic trypomastigotes. Antiserum specific for Leishmania amazonensis GP63 specifically reacted with a 55-kDa TcGP63 form in metacyclic trypomastigotes, suggesting stage-specific expression of different isoforms. Surface biotinylation and endoglycosidase digestion experiments showed that TcGP63 is an ecto-glycoprotein in epimastigotes but is intracellular and lacking in N-linked glycans in metacyclic trypomastigotes. Immunofluorescence microscopy showed that TcGP63 is localized on the surfaces of epimastigotes but distributed intracellularly in metacyclic trypomastigotes. TcGP63 is soluble in cold Triton X-100, in contrast to Leishmania GP63, which is detergent resistant in this medium, suggesting that GP63 is not raft associated in T. cruzi. Western blot comparison of our antiserum to a previously described anti-peptide TcGP63 antiserum indicates that each antiserum recognizes distinct TcGP63 proteins. Preincubation of trypomastigotes with either TcGP63 antiserum or a purified TcGP63 C-terminal subfragment reduced infection of host myoblasts. These results show that TcGP63 is expressed at all life stages and that individual isoforms play a role in host cell infection.
منابع مشابه
gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection.
gp63 is a highly abundant glycosylphosphatidylinositol (GPI)-anchored membrane protein expressed predominantly in the promastigote but also in the amastigote stage of Leishmania species. In Leishmania spp., gp63 has been implicated in a number of steps in establishment of infection. Here we demonstrate that Trypanosoma cruzi, the etiological agent of Chagas' disease, has a family of gp63 genes ...
متن کاملInhibition of Host Cell Lysosome Spreading by Trypanosoma cruzi Metacyclic Stage-Specific Surface Molecule gp90 Downregulates Parasite Invasion
Successful infection by Trypanosoma cruzi, the agent of Chagas' disease, is critically dependent on host cell invasion by metacyclic trypomastigote (MT) forms. Two main metacyclic stage-specific surface molecules, gp82 and gp90, play determinant roles in target cell invasion in vitro and in oral T. cruzi infection in mice. The structure and properties of gp82, which is highly conserved among T....
متن کاملFibronectin-degrading activity of Trypanosoma cruzi cysteine proteinase plays a role in host cell invasion.
Trypanosoma cruzi, the agent of Chagas disease, binds to diverse extracellular matrix proteins. Such an ability prevails in the parasite forms that circulate in the bloodstream and contributes to host cell invasion. Whether this also applies to the insect-stage metacyclic trypomastigotes, the developmental forms that initiate infection in the mammalian host, is not clear. Using T. cruzi CL stra...
متن کاملIdentification of Protein Complex Associated with LYT1 of Trypanosoma cruzi
To carry out the intracellular phase of its life cycle, Trypanosoma cruzi must infect a host cell. Although a few molecules have been reported to participate in this process, one known protein is LYT1, which promotes lysis under acidic conditions and is involved in parasite infection and development. Alternative transcripts from a single LYT1 gene generate two proteins with differential functio...
متن کاملTrypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin
American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 77 5 شماره
صفحات -
تاریخ انتشار 2009